THE PRESENTATION OF THE NONSTEADY
TEMPERATURE FIELD OF A STEAM TURBINE
ROTOR IN GENERALIZED FUNCTIONS

O. T. Il'chenko and L. G. Voronovich UDC 621.165:536.212

Results of investigation into the possibility of expressing the temperature field of a turbine
rotor in terms of generalized functions of temperature for use in the analysis of nonsteady
thermal processes are presented.

Investigation of the thermal state of steam turbine rotors by approximate analytical methods and by
electrical simulation has been the subject of numerous publications. The most comprehensive survey of
this problem is given in [1].

It must be kept in mind that the assessment of the thermal state of rotors during starts from various
states necessitates the investigation of a virtually infinite number of transitional conditions. Investigation
of the thermal state of even a single type of rotor requires a lengthy programming of an analog computer.

There exists, therefore, an undoubted interest in devising a method of solving the problem on an analog
computer which would subsequently permit the determination of temperature variation at the most charac-
teristic points under any f{ransitional conditions and during starts from any initial states without resorting to
further simulation.

The theory of thermal conductivity [2] shows that in problems of simple heating (cooling) of bodies of
conventional form, it is possible to find for individual points of such bodies certain functions of temperature
6 = f(Bi, Fo) which we shall call generalized functions.

Although in one-dimensional problems related to bodies of conventional form with constant boundary
conditions 0 = f(Bi, Fo), it may not be so in the case of a rotor. In problems of heating (cooling) of rotors,
owing to the expansion process, boundary conditions vary from stage to stage, and it is not possible to assert
a priori that functions 6 of only Bi and Fo, derived from the heat exchange conditions at the surface in the
vicinity of a given point, can be found when boundary conditions at individual charaecteristic points of a rotor
are constant.

However, the fact that the medium temperature and the coefficients of heat exchange at the surface
of a rotor change smoothly from stage to stage supports the assumption of the possibility of determining
the form of function 8 for characteristic points of a rotor from results of simulation on an analog computer
of a number of heating modes with fixed boundary conditions corresponding to certain part-load operations
and for different initial parameters of steam at the turbine inlet.

The working part of a multistage rotor may be considered as consisting of consecutively connected
similar elements (see shaded section in Fig. 1).

To find the form of function ¢ for each characteristic point of the object under investigation it is
necessary to determine the relative importance of the effect of all factors on the temperature at a given
point. For a rotor subjected to heat exchange along its external surface only, it is natural to expect the
heat exchange at the surface in proximity to the considered point to be of paramount importance. For like
points of similar elements, e.g., points 100, 98, 96, ...,88, and 86 in the rotor bore, or points 49, 53, 57,
...,73, and 77 along the external generatrix of diaphragm seal sections, etc., (see Fig. 1), we determine a

V.I.LeninPolytechnic Institute , Khar kov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.15,
No. 6, pp. 1086-1092, December, 1968. Original article submitted January 15, 1968.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

1234



49 53 57 6/ 65 69 73 77 171 175 179 183 187 19¢

mim/m Jl\
1

L]
11

HH f

B
r—ttﬂ‘¥

Li.

TT 17V N
100 98 96 94 92 90 88 65

Fig. 1. Diagram of a multistage rotor of a steam tur-
bine.
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Fig. 2. Generalized functions of temperature 6 = f(Bi)

with Fo as parameter for points of the rotor surface
in the region of diaphragm seals: 1) Fo = 0.04; 2) Fo

number of numerical values of functions 6 at
specific instants of time from results of analog
computation as

U—U,

0= L,
Um“‘ Ur

The difference between the medium maximum
temperature at the boundary of the investigated
zone and the minimum temperature of the medium
or body possible in the simulation of this problem
was taken as 100% of the potential.

It was found that for various Bi and fixed Fo
6 at like points of the same rotor elements fit well
a single curve. As an example, curves of § = {(Bi)
are shown in Fig. 2 for several values of Fo and
points 49, 53, 57, 61, 65, 73, and 77 of the outer
generatrix of diaphragm seals. We point out that
different conditions of heat exchange (the Biot
number and the temperature of the medium) at the
considered points were obtained in different heat-
ing problems, and are also due to the natural
variation of heat exchange conditions along the
working part (of the rotor). Data pertaining to

= 0.08; 3) Fo = 0.16; 4) Fo = 0.32; 5) Fo = 1.2; Q)
point 65; V) point 73; A) point 77; O0) point 61; x)
point 49; e) point 53; 7) h.

Figs. 2 and 3 are summarized in Table 1.

Similar generalized functions 9= f(Bi) with
Fo as parameter apply, also, to other similar
points along rotor stages and at end seals.

Using the method of least squares and knowing a number of values of function 6 for certain values of
Fo and given Bi, it is obviously possible to determine the form of the approximating function 8 = f(Fo) with
Bi as parameter (see, e.g., Fig. 3). We note that when the form of function § = f(Fo) with Bi as a fixed
parameter is determined in this way, an interpolation of this function with respect to its values at other Bi
becomes necessary.

If the initial temperature distribution is either uniform or an analytic function, which corresponds to
a stationary thermal state and constant temperature of the medium, the variation of the generalized function
of temperature at a given point is independent of the medium temperature and of the initial temperature
distribution. The analysis of results of this investigation confirms the validity of this statement also for
bodies of complicated shapes. Let us consider individual points of curves in Fig. 2, where, e g., experi-
mentally obtained temperatures ty, = 551°K of the medium and ty = 473°K for Bi = 1.95, ty; = 563°K and ty
= 408°K for Bi = 5.69, t;;; = 622°K and ty = 599°K for Bi = 8.3, etc., correspond to points along curve 3.

Since the investigations have shown that at like points of similar elements of a multistage rotor the
generalized functions 6 = {(Bi, Fo) are identical, the investigation of the thermal state of a rotor requires
the construction of a comparatively limited number of sets of generalized functions. Moreover, since at
points of plane cross sections normal to the axis 0 = f(Bi, Fo), the temperature field of the rotor can be de-
termined by calculating the temperature variation at n plane sections.

A comparison of generalized functions of temperature for the front-end seal region with those for an
infinitely long cylinder [2] is of interest. It will be seen that the generalized functions of temperature for an
infinitely long cylinder and those for the end-seal region (see Fig.3A)are virtually identical, since the ther-
mal state of the extended part of the latter (points 175-191 in Fig. 1) approaches that of an infinitely long
cylinder. Temperature differences at selected points of a turbine rotor can be readily estimated for any
conditions of simple heating by comparing the variation of = f(Bi, Fo) at such points.

The generalized functions of temperature for characteristic points of the investigated region, derived
by simulating a number of problems of simple heating and cooling, make at the same time possible the cal-
culation of temperature variation at such points for any conditions of complex heating.
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TABLE 1. Summary of Data on Boundary and Initial Conditions at
Characteristic Points of a Rotor for which Generalized Functions
of Temperature are Shown in Figs. 2 and 3

Point 65 Point 73 Point 75 Point 61 Point 49 Point 53
Bi b oKl BE | fmSKy B | fme K| Bt | fmSK| B tmsK} Bi | fm,"K

[a

o

= 0,5 | 453 2,5{ 503 | 0,75 | 453 | 1,95| 551 | 20,5 | 677 | 1,42 | 443

& 2,091 565 | 10 606 | 2,94 | 607 | 7,8 605 | 82 563 | 5,69 | 563
8,36| 622 | 40 693 | 47,2 | 667 — — — — 190,91} 673
33,5 | 633 | 160 743 — — — — —_— — — —
134 703 — — — — — — — — — —

Point 183 Point 175 Point 187 Point 191

o

C:b s |- K| tmeR] B 4. K| enK| mi | fs KD emK] B | & K| 6K

i :

<)

& 130 | 576 | 718 | 9,9 | 473 | 544 28 545 | 688 | 0,61 | 413 | 663
8,1 | 473 | 603 | 2,5 | 569 | 596 — — — — — —

Point 100 Point 98 Point 86 Point 88

ﬁ Bi o K P KL Bl | B K| fmKl BQ tr, °K| fm°K{ i | &, °K| tp,°K

60

&

o |20,5| 413 | 681 | 90 521 | 703 | 12 548 | 734 | 10 473 | 719

& 5,15] 333 | 512 [ 5,6 | 333 | 527 | 2,94 | 413 | 507 | 2,5 | 413 | 498
1,3 413 | 435 | 1,4 | 473 { 655 — — — — — —

The method of solving complex heating problems with time-variable boundary conditions of the third
kind by using generalized functions is based on the following proposition. Investigations carried out on
models of various steam turbine structural elements have shownan absence of distortion of the temperature
field, when a piece-wise function, with the approximating ag; not exceeding +15% of actual values, is sub-
stituted for the continuously varying function « = f(1). Hence it is possible to consider the problem of com~
plex heating during the time interval of constant ey as one of simple heating with step-wise transition to
new conditions at the boundaries in the next following time interval.

Noting that, as shown by investigations, the relative temperature 0 is independent of the initial and
the medium temperatures, from the value of 6, = f(Bi;, Fo,) obtaining at the end of the first time interval
71 we determine a fictitious time 74 corresponding to the same 6, but at a new value of @3,(Bi,). Then from
function ¢ = f(Bi,, Fo) we determine the generalized temperature at the given point and in the interval of
time AT, from Ty to T, = Tyf + ATy, and so on. The duration of the time interval AT, corresponds to the
sector of constant as,.

The variation of temperature at certain points of a rotor under starting conditions with sliding param-
eters computed by generalized functions and by electrical analog methods, as well as the variation of the
medium temperature and of the heat exchange coefficient in the neighborhood of certain points of the rotor
are shown in Fig. 4. The comparison shows that at various points of the rotor surface and inside it the
discrepancy between computed values and those measured in direct electrical simulation of this problem do
not exceed the limits of accuracy of solutions on grid models.

This leads to the conclusion that generalized functions of temperature make possible the calculation
of temperature variation at characteristic points of a region for any law governing boundary conditions at the
surfaces of heat exchange.

Generalized functions of temperature permit, moreover, the calculation of the thermal elongation of a
rotor under any transitory conditions. However, the calculation of thermal elongation necessitates the con-
struction of mean integral generalized functions for (individual) cross sections. This is done in the same
manner as the calculation of actual temperature, except that mean integral generalized functions are used.
In this case, as in the calculation of the temperature field, a piece-wise linear function o = f(7) with devia-
tions of o5 notexceeding +15% of actualvalues is constructed for a number of instants of time from obtained
values of heat exchange coefficients at characteristic points of the rotor surface. Having determined o/ (Bij)
for the piece-wise linear function ¢ = f(7) and the duration of constancy intervals, we plot the curve of
?)_g = f(7) calculated for a cross section from the mean integral functions 9 = {(Bi, Fo). Knowing the law
of variation of the relative temperature fg in a section and the temperature variation of the medium ty,
= f(7), we determine the mean integral temperature of a cross section at any instant of time from

(@) = 8, () [tf) — 1] + 1,
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Fig. 3. A) Generalized functions of temperature § = f(Fo) for points
at the rotor surface in the region of front-end seal with Bi as param-
eter [1) Bi = 130; 2) Bi = 28; 3) Bi = 9.9; 4) Bi = 8.1; 5) Bi = 2.5; 6)

Bi = 0.61]. Dashedlines denote curves calculated in [2]. B) The same
functions for points of the rotor bore in the region of diaphragm seals
with Bi as parameter [1) a is point 100; b is point 98; ¢ is point 92

(Bi > 20); 2) d is point 88; e is point 86 (Bi = 10-12); 3) f is point 100;
a is point 98 (Bi = 5.5); 4) b is point 86; g is point 88 (Bi ~ 2.7); 5) h
is point 100; e is point 98 (Bi = 1.4)].
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Fig. 4. Temperature variation at characteristic points of a rotor
under starting conditions with sliding parameters. A) Variation of
the medium temperature and of the intensity of heat exchange in

the vicinity of certain points of the rotor surface [(1)-(4) and (5)-
(8) are, respectively, the heat exchange intensities and the tempera-
tures of the medium at points: 49, 57, 65, and 171]. B) Variation of
temperature at certain points of the rotor calculated by generalized
formulas and electrical simulation under considered conditions [1)
point 100; 2) point 96; 3) point 65; 4) point 171]; calculated curves
are denoted by a; b denotes temperatures measured for simulation,
tin °K, o in W/m? -deg.

The calculation of thermal elongation from known mean integral temperatures presents no further
difficulties.

Owing to technical complexity of temperature measurements, these are limited in practical investi-
gations of steam turbines to the determination of temperature distribution along the central bore of the

rotor.
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Obviously, such temperature measurements do not provide exhaustive data on the thermal state of a
rotor under transient conditions. The presentation of temperature fields in generalized functions widens
the possibility of using the results of temperature measurements in central bores of steam turbine rotors
for solving inverse problems of unstable heat conduction, and the subsequent determination of the tempera-
ture field corresponding to actual conditions of heat exchange at the surface during a transient mode of
operation. It should be noted, however, that this requires, in addition to measuring the temperature in the
central bore of the rotor, the temperature of steam at the same cross sections of the working part of the
rotor to be measured, since the determination of the relative temperature 5g necessitates the knowledge
of the temperature variation at a given point, as well as that of the temperature of the medium in the vicinity
of that point.

The curves of generalized functions of temperature appearing in Fig. 3B for points of the rotor center
bore in the zone of diaphragm seals show that an error of 1% in the definition of the relative temperature
6., even for an intensity of heat exchange corresponding to a/A = 5.0 m ™!, results in an error of an order of
10% in the determination of o. For a heat exchange intensity increased to a/A ~ 30 m™ the same error
in the magnitude of the relative temperature leads to an error of the order of 20% in the definjtion of «.
However, measurements of temperature inside the bore as the heat exchange intensity is increasedup to «

/A =50 m™! lead to the conclusion that the heat intensity at the surface is above this level, since further
increase of the heat exchange intensity has virtually no effect on temperature variation in the rotor bore.

NOTATION

U is the instantaneous potential at a given point of the model, %;

Uyp is the initial potential at a given point of the model corresponding to a uniform distribution or
a steady state, %;

Um is the potential of the medium in the vicinity of a given point of the model, %;

ty is the initial temperature at a given point corresponding to a uniform distribution or a steady
state;

tm is the temperature of the medium in the vicinity of the given point;

Bi =ar/A is the Biot number, where r is the external radius of the rotor taken as the reference di-
mension;

a is the heat exchange coefficient;

a3i is the approximating value of the heat exchange coefficient whose deviation from actual values

does not exceed =15%.
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